
ER Diagrams, Domain Model,
and N-Layer Architecture

In the last chapter, we saw the basic layering of the monolithic 1-tier 1-layer
architectural style in action, with the UI layer having code-behind classes as the
sub-layer. This 1-tier 1-layer architecture is the default style in ASP.NET and Visual
Studio 2005/2008. To overcome the limitations of this style, we can further break the
application code into n-layers, where the number "n" actually depends on the
project requirements.

In this chapter we will:
Learn the 2-layer style
Understand ER diagrams
Understand what a domain model is, and what UML relationships are
Learn the 3-layer style
Learn about object data source controls

Let's revisit the 1-tier ASP.NET application configuration described in the
last chapter.

Note that the application as a whole including database and client
browser is three tier.

Rendered HTML

Web Application
UI Layer

(Machine A)

Client Browser

Application Tier 1 Tier 2: client browser

•
•
•
•
•

ER Diagram, Domain Model, and N-Layer Architecture

[50]

As mentioned in the last chapter, we can call this 1-tier architecture a 3-tier
architecture if we include the browser and database (if used). For the rest of this
chapter we will ignore the database and browser as separate tiers so that we can
focus on how to divide the main ASP.NET application layers logically, using the
n-layer pattern to its best use.

We will first try to separate the data access and logical code into their own separate
layers and see how we can introduce flexibility and re-usability into our solution.
We will understand this with a sample project. Before we go ahead into the technical
details and code, we will first learn about two important terms: ER Diagram and
Domain Model, and how they help us in getting a good understanding of the
application we need to develop.

Entity-Relationship Diagram
Entity-Relationship diagrams, or ER diagrams in short, are graphical representations
depicting relationships between different entities in a system. We humans
understand and remember pictures or images more easily than textual information.
When we first start to understand a project we need to see how different entities in
the project relate to each other. ER diagrams help us achieve that goal by graphically
describing the relationships.

An entity can be thought of as an object in a system that can be identified
uniquely. An entity can have attributes; an attribute is simply a property
we can associate with an entity. For example, a Car entity can have the
following attributes: EngineCapacity, NumberofGears, SeatingCapacity,
Mileage, and so on. So attributes are basically fields holding data to
indentify an entity. Attributes cannot exist without an entity.

Let us understand ER diagrams in detail with a simple e-commerce example: a very
basic Order Management System. We will be building a simple web based system
to track customer's orders, and manage customers and products. To simplify the
learning curve, we will use this example regularly in the coming chapters, to see how
different architectural styles shape the solution differently, and how we can move
towards a more scalable n-tier system.

To start with, let us list the basic entities for our simplified Order Management
System (OMS):

Customer: A person who can place Orders to buy Products.
Order: An order placed by a Customer. There can be multiple Products
bought by a Customer in one Order.

•

•

